СЕРТИФІКАЦІЙНА РОБОТА 3 XIMIÏ

Час виконання -150 хвилин
Робота складається з 50 завдань різних форм. Відповіді до завдань Ви маєте позначити в бланку A.
Результат виконання завдань сертифікаційної роботи буде зараховано як результат державної підсумкової атестації та використано під час прийому до вищих навчальних закладів.

Інструкція щодо роботи в зошиті

1. Правила виконання зазначені перед завданнями кожної нової форми.
2. Відповідайте лише після того, як Ви уважно прочитали та зрозуміли завдання.
3. У разі необхідності використовуйте як чернетку вільні від тексту місця в зошиті.
4. Намагайтеся виконати всі завдання.
5. Ви можете скористатися таблицями: «Періодична система хімічних елементів Д. І. Менделєєва», «Розчинність основ, кислот, амфотерних гідроксидів і солей у воді», «Ряд активності металів», що наведені на сторінках $2,15,16$ цього зошита.

Інструкція щодо заповнення бланка відповідей \boldsymbol{A}

1. у бланку \boldsymbol{A} записуйте лише правильні, на Вашу думку, відповіді.
2. Відповіді вписуйте чітко, дотримуючись вимог інструкції до кожної форми завдань.
3. Неправильно позначені, підчищені відповіді вважатимуться помилкою.
4. Якщо Ви позначили відповідь до якогось із завдань $1-42$ неправильно, то можете виправити її, замалювавши попередню позначку та поставивши нову, як показано на зразку:

5. Якщо Ви записали відповідь до якогось із завдань 43-50 неправильно, то можете виправити їі, записавши новий варіант відповіді в спеціально відведеному місці бланка A.
6. Ваш результат залежатиме від загальної кількості правильних відповідей, зазначених у бланку \boldsymbol{A}.
Ознайомившись з інструкціями, перевірте якість друку зошита та кількість сторінок. Їх має бути 16.
Позначте номер Вашого зошита у відповідному місці бланка \boldsymbol{A} так:

Бажаємо Вам успіху!

1. Періодична система хімічних елементів Д. I. Менделєєва (коротка форма)

Завдання 1-34 мають по чотири варіанти відповіді, з яких лише один правильний. Виберіть правильний, на Вашу думку, варіант відповіді, позначте його в бланку A згідно з інструкцією. Не робіть інших позначок у бланку A, тому що комп'ютерна програма ресструватиме їх як ПОМИЛКИ!

Будьте особливо уважні, заповнюючи бланк A !
Не погіршуйте власноручно свого результату неправильною формою запису відповідей

1. Найбільше число хімічних елементів у складі речовини, формула якої

A $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$
B $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
B $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NO}_{2}$
r $\quad \mathrm{CH}_{3} \mathrm{COOH}$
2. На зовнішньому енергетичному рівні атома хімічного елемента, що перебуває в основному стані, число неспарених електронів удвічі менше за число спарених. Назва цього елемента -

А Силіцій
Б Фосфор
В Сульфур
Г Хлор
3. Проаналізуйте твердження.
I. Радіус атома Хлору менший за радіус атома Флуору.
II. У ядрі нукліда ${ }^{32}$ S однакове число протонів і нейтронів.
III. Електронегативність Сульфуру більша за електронегативність Оксигену.
IV. Атом Сульфуру утворює простий аніон з такою самою електронною конфігурацією, як і в атома Аргону.
Правильні з-поміж них лише
A I, III
B I, IV
B II, III
Г II, IV
4. Укажіть формулу речовини, хімічні зв'язки в молекулі якої більш полярні порівняно зі зв'язками в молекулах інших речовин, формули яких наведено.
A $\mathrm{H}_{2} \mathrm{O}$
B $\quad \mathrm{H}_{2} \mathrm{~S}$
B CH_{4}
r NH_{3}
5. Нафтален - летка з характерним запахом кристалічна речовина. Її температура плавлення близько $80^{\circ} \mathrm{C}$. Укажіть тип кристалічних граток нафталену.
А йонні
Б атомні
B металічні
Г молекулярні
6. Шматочок натрію, уміщений у воду, плавиться, перетворюючись на кульку, яка швидко рухається поверхнею води. Одним з продуктів реакції є газувата речовина. Взаємодія натрію з водою - це реакція

A сполучення, екзотермічна
Б заміщення, екзотермічна
В сполучення, ендотермічна
Г заміщення, ендотермічна
7. Проаналізуйте з погляду окиснення-відновлення хімічну реакцію, схема якої $\mathrm{Na}_{2} \mathrm{SO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{Na}_{2} \mathrm{~S}$. У цій реакції Сульфур
А лише окиснюється
Б лише відновлюється
В не змінює ступінь окиснення
Г і окиснюється, і відновлюється
8. Колір вологого універсального індикаторного папірця змінюється під дією

А азоту й гідроген хлориду
Б амоніаку й гідроген сульфіду
В амоніаку й нітроген(I) оксиду
Г азоту й нітроген(II) оксиду
9. Які речовини не реагують між собою у водному розчині?

A $\mathrm{NaNO}_{3} \mathrm{i} \mathrm{HCl}$
b $\mathrm{Na}_{2} \mathrm{SiO}_{3}$ i HCl
B $\quad \mathrm{FeCl}_{3} \mathrm{i} \mathrm{NaOH}$
「 $\quad \mathrm{MgCl}_{2}$ i NaOH
10. У якому рядку формули оксидів записано в такій послідовності: кислотний, амфотерний, осно́вний?
A $\mathrm{Cl}_{2} \mathrm{O}_{7}, \mathrm{BaO}, \mathrm{Cu}_{2} \mathrm{O}$
b $\mathrm{SiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{BaO}$
B $\mathrm{N}_{2} \mathrm{O}, \mathrm{Cu}_{2} \mathrm{O}, \mathrm{ZnO}$
「 $\quad \mathrm{CO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{ZnO}$
11. Правильне твердження щодо натрій гідроксиду наведено в рядку

А його розплав проводить електричний струм
Б має молекулярні кристалічні гратки
В малорозчинна у воді речовина
Г взаємодіє з амоніаком

12．Сульфатна кислота реагує з
1 киснем
2 цинком
3 натрій карбонатом
4 карбон（IV）оксидом
Варіанти відповіді：
A 1， 3
B 1,4
B 2,3
「 2,4

13．У якому рядку в правильній послідовності записано формули солей，що утворюються внаслідок поступового добавляння розчину натрій гідроксиду до розчину ортофосфатної кислоти？
A $\mathrm{Na}_{3} \mathrm{PO}_{4}, \mathrm{NaH}_{2} \mathrm{PO}_{4}, \mathrm{Na}_{2} \mathrm{HPO}_{4}$
b $\mathrm{NaH}_{2} \mathrm{PO}_{4}, \mathrm{Na}_{2} \mathrm{HPO}_{4}, \mathrm{Na}_{3} \mathrm{PO}_{4}$
B $\mathrm{Na}_{2} \mathrm{HPO}_{4}, \mathrm{NaH}_{2} \mathrm{PO}_{4}, \mathrm{Na}_{3} \mathrm{PO}_{4}$
「 $\mathrm{NaH}_{2} \mathrm{PO}_{4}, \mathrm{Na}_{3} \mathrm{PO}_{4}, \mathrm{Na}_{2} \mathrm{HPO}_{4}$

14．Яка з речовин реагує і з хлоридною кислотою，і з калій гідроксидом？
A літій оксид
Б барій гідроксид
В силіцій（IV）оксид
Г алюміній гідроксид

15．Із розчину барій хлориду осадити катіони Ba^{2+} можна за допомогою розчину
А калій нітрату
Б натрій етаноату
B натрій карбонату
Г аргентум（I）нітрату

16．У якому випадку метал реагує із сіллю у водному розчині？
A Zn i SnCl_{2}
B Zn i MgCl_{2}
B Cu i NiSO_{4}
「 Cu i ZnSO_{4}

17．Укажіть правильне твердження．
А У реакції з водою атоми Калію і Кальцію віддають електрони з утворенням катіонів，що мають різну електронну конфігурацію．
Б Взаємодія калію і кальцію з водою відбувається бурхливо з виділенням кисню．
В У промисловості кальцій оксид добувають випалюванням вапняку．
Г Оксид і гідроксид Кальцію виявляють амфотерні властивості．
18. Яка з наведених схем хімічних реакцій описує процес алюмотермії?

A $\mathrm{Al}+\mathrm{O}_{2} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}$
b $\quad \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{Al} \rightarrow \mathrm{Fe}+\mathrm{Al}_{2} \mathrm{O}_{3}$
B $\mathrm{Al}(\mathrm{OH})_{3} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O}$
$\Gamma \quad \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{NO}_{2}+\mathrm{O}_{2}$
19. Визначте формули речовин \mathbf{X} і \mathbf{Y} у схемі перетворень

$$
\mathrm{Fe} \xrightarrow{+\mathbf{X}} \mathrm{FeCl}_{3} \xrightarrow{+\mathbf{Y}} \mathrm{FeCl}_{2}
$$

	\mathbf{X}	\mathbf{Y}
\mathbf{A}	Cl_{2}	KI
\mathbf{B}	Cl_{2}	CO_{2}
\mathbf{B}	HCl	NH_{3}
$\boldsymbol{\Gamma}$	HCl	CH_{4}

20. Два сухих циліндри наповнили гідроген хлоридом. У перший циліндр занурили змочений водою універсальний індикаторний папірець, а в другий - скляну паличку, змочену концентрованим розчином амоніаку.
Проаналізуйте твердження. Чи є поміж них правильні?
I. У першому циліндрі універсальний індикаторний папірець змінив колір на синій.
II. У другому циліндрі навколо палички утворився білий дим.

A правильне лише I
Б правильне лише II
В обидва правильні
Г немає правильних
21. Сірка є відновником у реакції з

A воднем
Б киснем
B натрієм
Г залізом
22. Які твердження щодо властивостей ортофосфатної кислоти є правильними?

1 існує лише у водному розчині
2 реагує з амоніаком
3 легко окиснюється
4 є трьохосновною
Варіанти відповіді:
A 1,3
B 1,4
B 2,3
「 2,4
23. Газуваті кисень та карбон(IV) оксид можна відрізнити за

А кольором
В допомогою тліючої скіпки
B допомогою розчину сульфатної кислоти
Г допомогою фільтрувального паперу, змоченого розчином фенолфталеїну
24. Укажіть назву за номенклатурою IUPAC речовини, структурна формула якої

А 1,2-диметилпропан-1-ол
Б 2,3 -диметилпропан-3-ол
В 2-метилбутан-3-ол
Г 3-метилбутан-2-ол

25. Яка з речовин не реагує з бромною водою?

A пропен
Б бутан
B фенол
Г анілін
26. Укажіть продукт каталітичної гідратації етену.

A етанова кислота
Б етаналь
B етанол
Г етан
27. Із амоніачним розчином аргентум(I) оксиду реагуватиме

A бут-1-ин
Б бут-2-ин
В бут-1-ен
Г бут-2-ен
28. Органічна речовина, формулу якої наведено,

1 є структурним ізомером бензену
2 необмежено розчиняється у воді

3 вступає в реакцію полімеризації
4 окиснюється легше, ніж бензен
Укажіть правильний варіант відповіді.
A 1,2
B 1,3
B 2,4
「 3, 4
29. У пробірку помістили кілька крапель етанолу. Розжарили в полум’ї мідну спіраль. Унаслідок прожарювання мідь окиснилася, на спіралі утворився шар купрум(II) оксиду чорного кольору. Потім розжарену спіраль занурили в етанол, що був у пробірці. Укажіть формулу продукту окиснення етанолу.
A CO_{2}

B $\quad \mathrm{CH}_{3}-\mathrm{C} \stackrel{=}{=}$
Г $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}$
30. Щоб довести ненасичений характер речовини, структурну формулу якої наведено, потрібно використати
A розчин метилового оранжевого
Б розчин натрій гідроксиду

B вапняну воду
Г бромну воду
31. Укажіть формулу естеру, що є продуктом взаємодії 2 -метилпропан-1-олу та етанової кислоти.

A	E	B	Γ

32. На лабораторному столі є такі реактиви й обладнання: амоніачний розчин аргентум(I) оксиду, водний розчин натрій гідрогенкарбонату, свіжоосаджений купрум(II) гідроксид, універсальний індикаторний папірець, пальник, сірники, тримач для пробірок, штатив з чистими порожніми пробірками та три пронумеровані пляшечки з прозорими безбарвними рідинами.
Щоб визначити, у якій з пронумерованих пляшечок міститься водний розчин етанолу, а в яких - водні розчини гліцеролу й глюкози, потрібно використати
A універсальний індикаторний папірець
Б амоніачний розчин аргентум(I) оксиду
В водний розчин натрій гідрогенкарбонату
Г свіжоосаджений купрум(II) гідроксид
33. Правильне твердження щодо аніліну наведено в рядку

A належить до насичених амінів
Б взаємодіє з розчином натрій гідроксиду
B можна добути відновленням нітробензену
Г є сильнішою органічною основою, ніж етиламін
34. Укажіть правильні твердження щодо речовин I-VI, формули яких наведено.

I	II	III
IV $\mathrm{CH} \equiv \mathrm{CH}$	V	VI

1 речовина I - продукт ізомеризації бутану
2 структурним ізомером речовини II є речовина III
3 формулі II можуть відповідати дві сполуки - цис- і транс-ізомери
4 масова частка Карбону в речовині IV така сама, як і в речовині V
5 речовини V і VI належать до різних гомологічних рядів
Варіанти відповіді:
A 1,2
B 2,4
B 3,5
Г 4,5

У завданнях 35-40 до кожного з чотирьох рядків інформації, позначених ЦИФРАМИ, доберіть один правильний, на Вашу думку, варіант, позначений БУКВОЮ. Поставте позначки в таблицях відповідей до завдань у бланку A на перетині відповідних рядків (цифри) і колонок (букви). Усі інші види Вашого запису в бланку A комп’ютерна програма ресструватиме як ПОМИЛКИ!

Будьте особливо уважні, заповнюючи бланк A !
Не погіршуйте власноручно свого результату неправильною формою запису відповідей
35. Установіть відповідність між схемою процесу відновлення та числом електронів, що беруть участь у ньому.

Схема процесу відновлення
$1 \quad \mathrm{BrO}_{3}^{-} \rightarrow \mathrm{Br}^{-}$
$2 \quad \mathrm{SO}_{4}^{2-} \rightarrow \mathrm{SO}_{2}$
$3 \quad \mathrm{NO}_{3}^{-} \rightarrow \mathrm{NH}_{4}^{+}$
$4 \mathrm{MnO}_{4}^{-} \rightarrow \mathrm{MnO}_{2}$

Число електронів

A 2
B 3
B 4
Г 6
Д 8
36. Установіть відповідність між реагентами та газуватим продуктом реакції.

Реагенти

1 кальцій карбід і вода
2 алюміній карбід і вода
3 алюміній і хлоридна кислота
4 кальцій карбонат і хлоридна кислота

Газуватий продукт реакиії
А карбон(IV) оксид
Б карбон(II) оксид
В водень
Г метан
Д етин

37. Установіть відповідність між речовиною, структурну формулу якої наведено, та класом органічних сполук, до якого вона належить.

Структурна форлула речовини

1

2

3

4

Клас органічних сполук
А карбонові кислоти
Б альдегіди
В спирти
Г естери
Д етери
38. Установіть відповідність між схемою перетворення та типом хімічної реакції.

Схема перетворення
1

2

3

4

Tип хімічної реакиії

A заміщення
Б приєднання
В ізомеризації
Г відщеплення
Д повного окиснення
39. Установіть відповідність між природою аміну та його структурною формулою.

Природа аміну

1 первинний насичений
2 вторинний насичений
3 первинний ароматичний
4 вторинний ароматичний

Структурна формула аміну
A

Б $\begin{gathered}\text { Б } \\ \mathrm{CH}_{3}-\stackrel{\mathrm{CH}_{3}}{\mathrm{C}}-\mathrm{CH}_{2}-\mathrm{CH}_{3} \\ \\ \\ \mathrm{NH}_{2}\end{gathered}$
B $\mathrm{CH}_{3}-\mathrm{NH}-\underset{\mid}{\mathrm{CH}}-\mathrm{CH}_{3}$

「

А Б В Г Д

40. Установіть відповідність між хімічною реакцією та одним з її продуктів.

Хімічна реакиія
1 міжмолекулярна дегідратація метанолу
2 лужний гідроліз 2-бромопропану
3 термічне розкладання метану
4 часткове окиснення етаналю

А Б В Г Д

$\mathbf{1}$					

Продукт хімічної реакиї
A $\mathrm{CH}_{3}-\underset{\substack{\mathrm{O} \\ \mathrm{OH}}}{\mathrm{CH}-\mathrm{CH}_{3}}$
b $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}$
B $\underset{\substack{\mathrm{O}}}{\mathrm{H}-\mathrm{O}-\mathrm{CH}_{3}}$
Г $\quad \mathrm{CH}_{3}-\mathrm{C}=\stackrel{\mathrm{O}}{\stackrel{\mathrm{OH}}{ }}$
Д $\mathrm{CH} \equiv \mathrm{CH}$

у завданнях 41, 42 розташуйте факти (явища, процеси тощо) у правильній послідовності. Поставте позначки в таблицях відповідей до завдань у бланку A на перетині відповідних рядків (цифри) і колонок (букви). Цифрі 1 має відповідати вибраний Вами перший факт, цифрі 2 - другий, цифрі 3 - третій, цифрі 4 - четвертий. Усі інші види Вашого запису в бланку A комп'ютерна програма реєструватиме як ПОМИЛКИ!

Будьте особливо уважні, заповнюючи бланк A !
Не погіршуйте власноручно свого результату неправильною формою запису відповідей
41. Розташуйте хімічні формули за збільшенням масової частки Цинку в речовинах.

A ZnSO_{4}
B ZnCO_{3}
B ZnO
Г ZnS

42. Розташуйте за зростанням температури кипіння алкани, назви яких наведено. Візьміть до уваги закономірності зміни температури кипіння в гомологічному ряду насичених вуглеводнів лінійної будови. Зважте на те, що температура кипіння ізомерних алканів зменшується зі збільшенням розгалуженості карбонового ланцюга.

А 2,2-диметилпропан
Б 2 -метилбутан
B пентан
Г гексан

Виконайте завдання 43-50. Одержані числові відповіді запишіть у зошиті та бланку A. Увага! Значення відносних атомних мас хімічних елементів під час обчислень округлюйте до ЦІЛИХ.
43. Обчисліть відносну густину карбон(IV) оксиду за гелієм.

Відповідь: \qquad
44. Маса суміші водню з азотом становить 18 г, а аїї об’єм - 56 л (н. у.). Обчисліть об’ємну частку (\%) водню в суміші.
\qquad
45. Обчисліть масу (г) води, яку необхідно добавити до розчину з масовою часткою натрій гідроксиду 40 \%, щоб одержати розчин масою 250 г з масовою часткою лугу 12 \%.

Відповідь: \qquad
46. До суміші масою 20 г, що складається з порошків магнію та силіцію, добавили розбавлену хлоридну кислоту, узяту в надлишку. Унаслідок цього виділився водень об’ємом 5,6 л (н. у.), який повністю витратили на відновлення заліза з ферум(II) оксиду.

1. Обчисліть масову частку (\%) магнію в суміші.

Відповідь: \qquad
2. Обчисліть масу (г) заліза, яке відновили з його оксиду.

Відповідь: \qquad
47. Продукти повного окиснення вуглеводню кількістю речовини 0,25 моль карбон(IV) оксид об’ємом 28 л (н. у.) і вода масою 27 г.

1. Виведіть молекулярну формулу вуглеводню. У відповіді запишіть число, що дорівнює сумі індексів у виведеній формулі.

Відповідь: \qquad
2. Обчисліть масу (г) вуглеводню, який окиснили.

Відповідь: \qquad
48. У лабораторній установці каталітичним окисненням сульфур(IV) оксиду кількістю речовини 5 моль добули сульфур(VI) оксид масою 240 г. Обчисліть відносний вихід (\%) сульфур(VI) оксиду.

Відповідь: \qquad
49. Використовуючи метод електронного балансу, перетворіть схему реакції

$$
\mathrm{PbO}_{2}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{PbSO}_{4}+\mathrm{H}_{2} \mathrm{CrO}_{4}
$$

на хімічне рівняння й укажіть коефіцієнт перед формулою окисника.

Відповідь: \qquad
50. Суміш масою 50 г, що складається з магній гідроксиду та магній карбонату, прожарили. Унаслідок цього обидва її компоненти повністю розклалися. Маса твердої речовини, яка утворилася, становить 30 г. Обчисліть масову частку (\%) магній карбонату в суміші.

Відповідь: \qquad
2. Періодична система хімічних елементів Д. І. Менделєєва (довга форма)

E	Групи елементів																	
合	Ia	IIa	IIIb	IVb	Vb	VIb	VIIb	VIIIb			Ib	IIb	IIIa	IVa	Va	VIa	VIIa	VIIIa
$\underline{1}$	$\begin{array}{rr} \text { H } & \mathbf{1} \\ 1,0079 \end{array}$																$\begin{aligned} & \mathbf{1} \quad \mathbf{H} \\ & 1,0079 \end{aligned}$	$\begin{aligned} & 2 \quad \mathrm{He} \\ & 4,0026 \end{aligned}$
$\underline{2}$	$\begin{array}{rr} \mathrm{Li} & 3 \\ 6,941 \end{array}$	$\begin{array}{r} \text { Be } 4 \\ 9,012 \end{array}$											$\begin{aligned} & \text { B } \quad 5 \\ & 10,81 \end{aligned}$	$\begin{array}{rr} \text { C } & 6 \\ 12,011 \end{array}$	$\begin{array}{lr} \text { N } & 7 \\ 14,0067 \end{array}$	$\begin{array}{rr} 0 & 8 \\ 15,999 \end{array}$	$\begin{array}{rr} \text { F } & 9 \\ 18,998 \end{array}$	$\begin{array}{r} \text { Ne } 10 \\ 20,180 \end{array}$
$\underline{3}$	$\begin{array}{r} \mathrm{Na} 11 \\ 22,990 \end{array}$	$\begin{array}{r} \mathrm{Mg} 12 \\ 24,305 \end{array}$											$\begin{array}{r} \text { Al } 13 \\ 26,982 \end{array}$	$\begin{array}{r} \text { Si } \quad \mathbf{1 4} \\ 28,086 \end{array}$	$\begin{array}{r} \text { P } \quad 15 \\ 30,974 \end{array}$	$\begin{array}{r} \text { S } \quad \mathbf{1 6} \\ 32,06 \end{array}$	$\begin{array}{rr} \text { Cl } & 17 \\ 35,453 \end{array}$	$\begin{array}{r} \text { Ar } 18 \\ 39,948 \end{array}$
4	$\begin{array}{r} \text { K } \quad 19 \\ 39,098 \end{array}$	$\begin{array}{r} \text { Ca } 20 \\ 40,08 \end{array}$	Sc 21 44,956	$\begin{array}{r} \text { Ti } 22 \\ 47,87 \end{array}$	$\begin{array}{r} \text { V } \quad 23 \\ 50,941 \end{array}$	$\begin{array}{r} \text { Cr } 24 \\ 51,996 \end{array}$	$\begin{array}{r} \text { Mn } 25 \\ 54,938 \end{array}$	$\begin{array}{r} \mathrm{Fe} 26 \\ 55,845 \end{array}$	$\begin{array}{r} \text { Co } 27 \\ 58,933 \end{array}$	$\begin{array}{r} \mathrm{Ni} \quad 28 \\ 58,69 \end{array}$	$\begin{aligned} & 29 \mathrm{Cu} \\ & 63,546 \end{aligned}$	$\begin{aligned} & 30 \mathrm{Zn} \\ & 65,41 \end{aligned}$	$\begin{array}{r} \text { Ga } 31 \\ 69,72 \end{array}$	$\begin{array}{r} \text { Ge } 32 \\ 72,64 \end{array}$	$\begin{array}{r} \text { As } 33 \\ 74,922 \end{array}$	$\begin{array}{r} \text { Se } 34 \\ 78,96 \end{array}$	$\begin{array}{r} \mathrm{Br} 35 \\ 79,904 \end{array}$	$\begin{array}{r} \mathrm{Kr} 36 \\ 83,80 \end{array}$
$\underline{5}$	$\begin{array}{r} \text { Rb } 37 \\ 85,468 \end{array}$	$\begin{array}{r} \text { Sr } 38 \\ 87,62 \end{array}$	$\begin{array}{cc} \text { Y } \quad 39 \\ 88,906 \end{array}$	$\begin{array}{r} \mathrm{Zr} \mathbf{4 0} \\ 91,22 \end{array}$	$\begin{array}{r} \mathrm{Nb} 41 \\ 92,906 \end{array}$	$\begin{array}{r} \text { Mo } 42 \\ 95,94 \end{array}$	$\text { Tc } \begin{array}{r} 43 \\ {[98]} \end{array}$	$\begin{array}{r} \text { Ru } 44 \\ 101,07 \end{array}$	Rh 45 102,905	Pd 46 106,4	$\begin{aligned} & 47 \mathrm{Ag} \\ & 107,868 \end{aligned}$	$\begin{aligned} & 48 \mathrm{Cd} \\ & 112,41 \end{aligned}$	$\begin{array}{r} \text { In } 49 \\ 114,82 \end{array}$	$\begin{array}{r} \text { Sn } 50 \\ 118,71 \end{array}$	$\begin{array}{r} \text { Sb } 51 \\ 121,76 \end{array}$	$\begin{array}{r} \mathrm{Te} 52 \\ 127,60 \end{array}$	$\begin{array}{lr} \text { I } & 53 \\ 126,904 \end{array}$	Xe 54 131,29
$\underline{6}$	$\begin{array}{r} \text { Cs } 55 \\ 132,91 \end{array}$	$\begin{array}{r} \text { Ba } 56 \\ 137,33 \end{array}$	$\begin{gathered} \mathrm{La}^{*} 57 \\ 138,905 \end{gathered}$	$\begin{array}{r} \text { Hf } 72 \\ 178,49 \end{array}$	Ta 73 180,948	$\begin{array}{r} \text { W } 74 \\ 183,84 \end{array}$	Re 75 186,207	$\begin{array}{r} \text { Os } 76 \\ 190,2 \end{array}$	$\begin{gathered} \text { Ir } \quad 77 \\ 192,22 \end{gathered}$	$\begin{array}{r} \text { Pt } 78 \\ 195,09 \end{array}$	$\begin{aligned} & 79 \mathbf{A u} \\ & 196,967 \end{aligned}$	$\begin{aligned} & 80 \mathrm{Hg} \\ & 200,59 \end{aligned}$	$\begin{array}{r} \text { Tl } 81 \\ 204,38 \end{array}$	$\begin{array}{r} \text { Pb } 82 \\ 207,2 \end{array}$	$\begin{aligned} & \mathrm{Bi} \quad 83 \\ & 208,980 \end{aligned}$	$\begin{array}{r} \text { Po } 84 \\ {[209]} \end{array}$	$\begin{array}{r} \text { At } 85 \\ {[210]} \end{array}$	Rn 86 [222]
7	$\begin{array}{r} \text { Fr } \\ {[223]} \end{array}$	$\begin{array}{r} \text { Ra } 88 \\ {[226]} \end{array}$	$\begin{array}{r} \mathbf{A c}^{+\# 8} 89 \\ {[227]} \end{array}$	$\begin{array}{r} \text { Rf } 104 \\ {[261]} \end{array}$	$\begin{aligned} \text { Db } & 105 \\ & {[262] } \end{aligned}$	$\begin{array}{\|c} \text { Sg } \\ {[266]} \\ {[266]} \end{array}$	$\begin{array}{rr} \text { Bh } & 107 \\ {[264]} \end{array}$	$\text { Hs } \begin{array}{r} 108 \\ {[267]} \end{array}$	$\begin{array}{r} \text { Mt } \\ \quad 109 \\ {[268]} \end{array}$	$\text { Ds } \begin{array}{r} 110 \\ {[271]} \end{array}$	$\begin{aligned} & 111 \mathrm{Rg} \\ & {[272]} \end{aligned}$	112 Cn	$\text { UUt }^{113}$	114 Fl	$\text { UUp }^{115}$	$116 \mathrm{Lv}$	$\text { UUs }^{117}$	$\text { UUo }^{118}$

* Лантаноїди	${ }_{140,12}^{58} \quad \mathrm{Ce}$	$\begin{aligned} & 59 \quad \mathrm{Pr} \\ & 140,908 \end{aligned}$	${ }_{144,24}^{60} \mathrm{Nd}$	$\begin{aligned} & 61 \\ & {[145]} \end{aligned}$	Pm	$\begin{aligned} & 62 \\ & 150,4 \end{aligned}$	Sm	$\begin{aligned} & 63 \\ & 151,96 \end{aligned}$	Eu	$\begin{aligned} & \mathbf{6 4} \\ & 157,25 \end{aligned}$		$\begin{aligned} & 65 \\ & 158,925 \end{aligned}$	Tb	66 $162,50$		$\begin{aligned} & 67 \\ & 164,93 \end{aligned}$		${ }_{167,26}^{68} \quad \mathrm{Er}$	$\begin{aligned} & 69 \\ & 168,93 \end{aligned}$	Tm	$\begin{aligned} & 70 \\ & 173,04 \end{aligned}$	Yb	$\begin{aligned} & 71 \\ & 174,97 \end{aligned}$	Lu
** Актиноїди	$\begin{aligned} & 90 \quad \text { Th } \\ & 232,038 \end{aligned}$	$\begin{array}{ll} 91 & \mathrm{~Pa} \\ {[231]} \end{array}$	$\begin{aligned} & 92 \quad \mathrm{U} \\ & 238,029 \end{aligned}$	$\begin{aligned} & 93 \\ & {[237]} \end{aligned}$		$\begin{aligned} & 94 \\ & {[244]} \end{aligned}$		$\begin{aligned} & 95 \\ & {[243]} \end{aligned}$	Am	$\begin{aligned} & 96 \\ & {[247]} \end{aligned}$		$\begin{aligned} & 97 \\ & {[247]} \end{aligned}$		$\begin{aligned} & 98 \\ & {[251]} \end{aligned}$		$\begin{aligned} & \mathbf{9 9} \\ & {[252]} \end{aligned}$		$\begin{aligned} & 100 \mathrm{Fm} \\ & {[257]} \end{aligned}$	$\begin{aligned} & 101 \\ & {[258]} \end{aligned}$		$\begin{aligned} & 102 \\ & {[259]} \end{aligned}$		$\begin{aligned} & 103 \\ & {[262]} \end{aligned}$	Lr

3. Розчинність основ, кислот, амфотерних гідроксидів і солей у воді (за температури $20-2{ }^{\circ} \mathrm{C}$)

Аніони	Катіони																		
	\boldsymbol{H}^{+}	NH_{4}^{+}	$L i^{+}$	$N a^{+}$	\boldsymbol{K}^{+}	Ag ${ }^{+}$	$\boldsymbol{M g} \boldsymbol{g}^{2+}$	Ca ${ }^{2+}$	$B a^{2+}$	$Z n^{2+}$	$M n^{2+}$	$\boldsymbol{P b}{ }^{2+}$	$\boldsymbol{C u}{ }^{2+}$	$\boldsymbol{H} \boldsymbol{g}^{2+}$	$N i^{2+}$	$\boldsymbol{F} \boldsymbol{e}^{2+}$	$\boldsymbol{F} \boldsymbol{e}^{3+}$	$A l^{3+}$	Cr^{3+}
$O H^{-}$		P	P	P	P	-	M	M	P	H	H	H	H	-	H	H	H	H	H
\boldsymbol{F}^{-}	P	P	M	P	P	P	M	M	M	P	P	M	P	\#	P	M	H	M	P
$C l^{-}$	P	P	P	P	P	H	P	P	P	P	P	M	P	P	P	P	P	P	P
Br^{-}	P	P	P	P	P	H	P	P	P	P	P	M	P	M	P	P	P	P	P
\boldsymbol{I}^{-}	P	P	P	P	P	H	P	P	P	P	P	M	-	M	P	P	-	P	P
S^{2-}	P	P	P	P	P	H	\#	\#	P	H	H	H	H	H	H	H	\#	\#	\#
SO_{3}^{2-}	P	P	P	P	P	H	M	M	M	P	M	M	-	\#	M	M	-	-	-
SO_{4}^{2-}	P	P	P	P	P	M	P	M	H	P	P	M	P	P	P	P	P	P	P
NO_{3}^{-}	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
PO_{4}^{3-}	P	P	M	P	P	H	M	H	H	H	M	H	\#	\#	H	H	H	H	H
CO_{3}^{2-}	P	P	P	P	P	M	M	H	H	H	H	H	\#	-	M	H	-	-	-
$\mathrm{CH}_{3} \mathrm{COO}^{-}$	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	-	P	P

[^0]| Li |
| :---: |

[^0]: «Р» - розчинна речовина (розчинність понад 1 г речовини у 100 г води);
 «M» - малорозчинна речовина (розчинність від 1 до 0,001 г речовини у 100 г води);
 «H» - практично нерозчинна речовина (розчинність менше 0,001 г речовини у 100 г води); «一» - речовина не існує;
 «\#» - речовина існує, але реагує з водою (ïі розчинність визначити не можна).

